Heparan Sulfate Biosynthesis – Clues from Knockout Mice
نویسنده
چکیده
منابع مشابه
Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice.
Here, we report that male heparan sulfate 6-O-sulfotransferase-2 (Hs6st2) knockout mice showed increased body weight in an age-dependent manner even when fed with a normal diet and showed a phenotype of impaired glucose metabolism and insulin resistance. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the expression of mitochondrial uncoupling proteins...
متن کاملGlucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology.
During the biosynthesis of heparan sulphate (HS) in the Golgi compartment, the first modification enzyme, glucosaminyl N-deacetylase/N-sulphotransferase (NDST), starts to work on the growing HS polysaccharide chain. This enzyme defines the overall design of the sulphation pattern, which will determine the ability of the HS chain to interact with target molecules. NDST removes acetyl groups from...
متن کاملHeparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling
Glycosaminoglycans are important regulators of multiple signaling pathways. As a major constituent of the heart extracellular matrix, glycosaminoglycans are implicated in cardiac morphogenesis through interactions with different signaling morphogens. Ext1 is a glycosyltransferase responsible for heparan sulfate synthesis. Here, we evaluate the function of Ext1 in heart development by analyzing ...
متن کاملAlteration of colonic epithelial cell differentiation in mice deficient for glucosaminyl N-deacetylase/N-sulfotransferase 4
Glucosaminyl N-deacetylase/N-sulfotransferases (NDSTs) are the first enzymes that mediate the initiation of heparan sulfate sulfation. We previously identified NDST4 as a putative tumor suppressor in human colorectal cancer. In the study, we generated an Ndst4 knockout (Ndst4-/-) mouse strain and explored its phenotypic characteristics, particularly in the development of colonic epithelial home...
متن کاملChondroitin sulphate N-acetylgalactosaminyl-transferase-1 inhibits recovery from neural injury
Extracellular factors that inhibit axon growth and intrinsic factors that promote it affect neural regeneration. Therapies targeting any single gene have not yet simultaneously optimized both types of factors. Chondroitin sulphate (CS), a glycosaminoglycan, is the most abundant extracellular inhibitor of axon growth. Here we show that mice carrying a gene knockout for CS N-acetylgalactosaminylt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004